If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-6r^2+4r+4=0
a = -6; b = 4; c = +4;
Δ = b2-4ac
Δ = 42-4·(-6)·4
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{7}}{2*-6}=\frac{-4-4\sqrt{7}}{-12} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{7}}{2*-6}=\frac{-4+4\sqrt{7}}{-12} $
| 20x+-1=2x-4 | | 10+13x=224 | | 4x+63=8x-9 | | -3/2a=12 | | 45=p-21 | | 10+13x=22- | | 20x+386=35x+344 | | 11370*1,02^x=12800*1,01^x | | x=11/6/5 | | 7x-11=16x-38 | | -8+t=-32 | | (x+12)^2-8=56 | | 18-4y=7(2-y)+6 | | 18-4y=7 | | 4^11+2x=1024 | | -6x+2(5-3x)=8 | | x+6=5x−13 | | 7x-0(3+4x)=19 | | 7x-4(3+4x)=19 | | 24−3y=2y−1 | | -(4c-7)=5c+(11-7c) | | -(4c-7)=5c | | (9-2b)-(b+5)=16 | | 27x=25*40 | | 18+0.15x=0.08x+25 | | 27x=25x40 | | 12x+3=(7x+4)-(-3x) | | 3(x+2)=9x+4 | | -2(4c-5)=26 | | 2/5(n+10)=8 | | 13x-(6x-8)=36 | | 2x-16=6x+6 |